Protein therapeutics represent a significant and growing component of the modern pharmacopeia, but their potential to treat human disease is limited because most proteins fail to traffic across biological membranes. Recently, we discovered a class of cell-permeant miniature proteins (CPMPs) containing a precisely defined, penta-arginine (penta-Arg) motif that traffics readily to the cytosol and nucleus of mammalian cells with efficiencies that rival those of hydrocarbon-stapled peptides active in animals and man. Like many cell-penetrating peptides (CPPs), CPMPs enter the endocytic pathway; the difference is that CPMPs containing a penta-Arg motif are released efficiently from endosomes, while other CPPs are not. Here, we seek to understand how CPMPs traffic from endosomes into the cytosol and what factors contribute to the efficiency of endosomal release. First, using two complementary cell-based assays …